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Abstract—In this paper we give the first construction
of a pseudorandom generator, with seed length O(logn),
for CC0[p], the class of constant-depth circuits with
unbounded fan-in MODp gates, for some prime p. More
accurately, the seed length of our generator is O(logn)
for any constant error ε > 0. In fact, we obtain our
generator by fooling distributions generated by low degree
polynomials, over Fp, when evaluated on the Boolean cube.
This result significantly extends previous constructions
that either required a long seed [1] or that could only
fool the distribution generated by linear functions over
Fp, when evaluated on the Boolean cube [2], [3].

Enroute of constructing our PRG, we prove two struc-
tural results for low degree polynomials over finite fields
that can be of independent interest.

1) Let f be an n-variate degree d polynomial over
Fp. Then, for every ε > 0 there exists a subset
S ⊂ [n], whose size depends only on d and ε, such
that

∑
α∈Fn

p :α6=0,αS=0 |f̂(α)|2 ≤ ε. Namely, there is a
constant size subset S such that the total weight of
the nonzero Fourier coefficients that do not involve
any variable from S is small.

2) Let f be an n-variate degree d polynomial over Fp.
If the distribution of f when applied to uniform
zero-one bits is ε-far (in statistical distance) from
its distribution when applied to biased bits, then for
every δ > 0, f can be approximated over zero-
one bits, up to error δ, by a function of a small
number (depending only on ε, δ and d) of lower
degree polynomials.
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I. INTRODUCTION

A pseudorandom generator (PRG for short), over
a domain D,1 for a family of tests T is an explicit
function G : Dr → Dn such that no test T ∈ T can
distinguish a random output of G from truly uniform
input elements in Dn. Namely,

max
T∈T

∣∣∣∣ Pr
x∈Dr

[T (G(x)) = 0]− Pr
x∈Dn

[T (x) = 0]
∣∣∣∣ ≤ ε .

Ideally, one would like to have the seed r as short as
possible and the error ε to be as small as possible.
A pseudorandom generator is considered efficient if
the seed length is O(log n) (as in this case, for some
applications, one can enumerate over all seeds to find
a ‘good’ one). Pseudorandom generators have been a
major object of study in theoretical computer science for
several decades, and have found applications in the area
of computational complexity, cryptography, algorithms
design and more (see [4], [5]).

A family of tests that was widely considered in the
literature is low degree polynomials over finite fields.
Before stating the formal definition of a PRG for low
degree polynomials we fix some notation: let f be a
function and D a distribution over the inputs of f . We
denote by f(D) the output distribution of f given inputs
sampled according to D. For a set S we denote by
f(S) the output distribution given that the inputs are
uniformly sampled in S (for example, f({0, 1}n) is the
distribution of f over uniform input bits).

Definition 1 (Pseudorandom distributions for degree d
polynomials). A distribution D taking values in Fnp is
pseudorandom for degree d polynomials over Fp with

1One should think of D as either over {0, 1} or over Fp.



error ε if, for any degree d polynomial f(x1, . . . , xn)
over Fp, the distributions f(D) and f(Fnp ) are ε-close
in statistical distance. A function G : {0, 1}r → Fnp is a
pseudorandom generator for degree d polynomials over
Fp, if the output distribution of G, given uniformly sam-
pled seeds, is a pseudorandom distribution for degree d
polynomials.

PRGs for linear polynomials over F2 were first con-
structed in [6] who gave PRGs with O(log n) seed
length. The distributions constructed in [6] are also
known as ε-biased distributions. Alon et al. extended
this construction to work over arbitrary finite fields
[7]. In [1] a pseudorandom generator for the class
of bounded degree polynomials over finite fields was
given.2 The seed length of [1] was not optimal and was
later improved in a sequence of works [8], [9], [10].
Note that all these generators take as input vectors from
Frp and output vectors in Fnp . In [2], [3] a different
kind of PRGs for linear polynomials were obtained.
Both works constructed a PRG G : {0, 1}r → {0, 1}n
that fools distributions generated by linear polynomials
over Fp, when evaluated on {0, 1}n, with seed length
r = O(log n). Namely, if f =

∑n
i=1 αixi is a

linear polynomial over Fp then the two distributions
f(G({0, 1}r)) and f({0, 1}n) are close to each other.
Thus, although f is a polynomial over Fp they restrict
their attention to the behavior of f on Boolean inputs.
We call such a generator a bit-pseudorandom generator.
We shall later give a more formal definition of bit-PRGs.

Another family of tests that received a lot of attention
is bounded depth circuits (i.e. AC0 circuits). This is
the class of constant-depth circuits with unbounded fan-
in AND, OR and NOT gates. AC0 is probably the
most intensively studied amongst classes of small-depth
circuits. Håstad [11] showed that the PARITY function
cannot be approximated by any polynomial size AC0

circuit. I.e., that no polynomial size AC0 circuit agrees
with parity on more than 1

2 + exp(−n) fraction of
inputs. In other words, the correlation of PARITY with
AC0 is exponentially small. This result was later used
by Nisan [12] for constructing efficient pseudorandom
generators for AC0 (these pseudorandom generators use
r = polylog(n) bits). Recently, following a break-
through by Bazzi [13], Braverman [14] showed that any
polylog-wise independent distribution is pseudorandom
for AC0 circuits, thus settling a conjecture of Linial
and Nisan [15]. AC0[p] is another well studied class
of circuits, consisting of all constant-depth circuits with
unbounded fan-in AND, OR, NOT and MODp gates (a

2This is not explicitly stated in [1], but it follows from their result
for depth 2 circuits with a symmetric function at the top.

MODp gate outputs 1 if the sum of its inputs is divisible
by p, and 0 otherwise). In contrast to the impressive suc-
cess in constructing pseudorandom generators for AC0,
no PRGs are known for AC0[p]. One reason is that no
strong correlation lower bounds are known for this class.
Razborov and Smolensky [16], [17] proved exponential
lower bounds for AC0[p] circuits and their results also
imply correlation lower bounds, albeit those are much
weaker than the ones known for AC0. Namely, [16],
[17] showed that the MODq function has polynomially
small correlation with AC0[p] when p and q are co-
prime. The class of AC0[m] where m is not a prime
power is only very weakly understood; in particular,
currently we cannot separate it from NP!

A. Our results

Motivated by the problem of constructing pseudoran-
dom generators for AC0[p], we study a natural subclass
- CC0[p] circuits. The class CC0[p] is the class of
constant depth circuits using only MODp gates. While
exponential lower bounds for this class follow from the
work of Smolensky [17], no pseudorandom generator
better than the one constructed in [1] (whose seed
length is r = exp(

√
log n)) is known for it. Our main

result is an explicit pseudorandom generator fooling
any CC0[p] circuit while using only r = O(log n)
random bits, for any fixed error ε > 0. Actually, our
construction gives bit-pseudorandom generators for low-
degree polynomials over finite fields, from which the
result for CC0[p] follows: Let Fp be a prime finite field.
The MODp function can be computed by a degree p−1
polynomial over Fp

MODp(x1, . . . , xn) = (x1 + . . .+ xn)p−1 (mod p) .

Hence, any depth k circuit in CC0[p] can be computed
by a polynomial over Fp of degree d = (p − 1)k.
Thus, in order to fool CC0[p] it is sufficient to fool
distributions induced by low degree polynomials over
Fp, when evaluated on inputs from the Boolean cube.
In other words, we have to generalize the aforemen-
tioned results of [2], [3] from linear polynomials to
any constant degree polynomials. This motivates the
following definition of bit-pseudorandom generators for
polynomials.

Definition 2 (Bit-pseudorandom distributions for de-
gree d polynomials). A distribution D taking values in
{0, 1}n is bit-pseudorandom for degree d polynomials
over Fp with error ε if, for any degree d polyno-
mial f(x1, . . . , xn) over Fp, the distributions f(D) and
f({0, 1}n) are ε-close in statistical distance. A function
G : {0, 1}r → {0, 1}n is a bit-pseudorandom generator



for degree d polynomials over Fp if the output distri-
bution of G over a uniform seed is a bit-pseudorandom
distribution for degree d polynomials.

Notice the difference between this definition and
Definition 1 where one has to fool the distribution of the
polynomial when evaluated over the entire space and not
just over the Boolean cube. As mentioned above, PRGs
for polynomials over small finite fields were studied in
several works [1], [8], [9], [10]. The best result to date
is by Viola.

Theorem 3 (Theorem 1 in [10]). There exists an
explicit and efficient function G : {0, 1}r → Fnp for
r = O(d · log(pn) + 2d · log(1/ε)) such that G({0, 1}r)
is pseudorandom for degree d polynomials over Fp with
error ε.

The problem of constructing bit-pseudorandom gen-
erators for linear polynomials (i.e. the case of d = 1)
was first studied by [2], [3]. Before describing their gen-
erator we need a few notations. For a = (a1, . . . , an) ∈
Fnp define ap−1 = (ap−1

1 , . . . , ap−1
n ) ∈ {0, 1}n to be the

p− 1 power of a. Similarly for a distribution D ⊂ Fnp ,
define Dp−1 ⊂ {0, 1}n by raising each element of D
to the p − 1 power. Both [2], [3] discovered the fol-
lowing construction for a bit-pseudorandom generator
for linear polynomials over Fp: the bitwise-XOR of the
p− 1 power of a pseudorandom distribution for degree
(p− 1) polynomial over Fp, and a k-wise independent
distribution.

Theorem 4 (Bit-pseudorandom distribution for linear
polynomials [2], [3]). Let Fp be a prime finite field
and ε > 0 be an error parameter. Let D ⊂ Fnp be a
pseudorandom distribution for degree p−1 polynomials
over Fp with error ε. Let K ⊂ {0, 1}n be a k-wise
independent distribution for k = O(p3 log 1/ε). Then
Dp−1 ⊕K is bit-pseudorandom distribution for linear
polynomials over Fp with error O(ε).

Our main result extends Theorem 4 to any constant
degree polynomial. We prove that the following is a
bit-pseudorandom distribution for degree d polynomials
over Fp: the bitwise-XOR of the p−1 power of a pseu-
dorandom distribution for degree ((p−1)d) polynomials
over Fp, and a k-wise independent distribution.

Theorem 5 (Main Theorem: Bit-pseudorandom distri-
bution). Let Fp be an odd prime finite field, d ≥ 1 an
integer and ε > 0 an error parameter. Then there exist
δ = δ(p, d, ε) and k = k(p, d, ε) such that the following
holds. Let D ⊂ Fnp be a pseudorandom distribution for
degree ((p − 1)d) polynomials with error δ. Let K ⊂

{0, 1}n be a k-wise independent distribution. Then, the
bitwise-XOR of the two distributions Dp−1 ⊕ K is a
bit-pseudorandom distribution for degree d polynomials
over Fp with error ε. The parameters k, δ satisfy

k(p, d, ε), δ(p, d, ε)−1 ≤ exp(2d+1)(ε−cp,d)

where exp(t) is the t-times iterated exponential function,
and cp,d > 0 is some constant which depends only on
p and d.

An immediate corollary is that there exists an efficient
and explicit pseudorandom generator G : {0, 1}r →
{0, 1}n fooling any depth-k circuit in CC0[p] with error
ε, where r = cp,k,ε · log n.

Corollary 6 (Pseudorandom generators for CC0[p]).
Let p be an odd prime number and ε > 0 an error
parameter. For any k > 0 there exists an explicit
pseudorandom generator G : {0, 1}r → {0, 1}n, where
r = cp,k,ε · log n, such that for any depth k circuit
C ∈ CC0[p], the statistical distance between the two
distributions C({0, 1}n) and C(G({0, 1}r)) is at most
ε.

Our proof of Theorem 5 is based on two new
structural results for low degree polynomials, over
finite fields, which may be of independent interest:

The first result is on the Fourier spectrum of such
polynomials. Let f : Fnp → Fp be a function. The α-
Fourier coefficient of f , for α ∈ Fnp , is defined as

f̂(α) = Ex∈Fn
p

[
ωf(x)−〈x,α〉

]
,

where ω = e2πi/p is a primitive p-root of unity, and
〈x, α〉 =

∑n
i=1 xiαi is the inner product of x and α. The

structural result we prove is that the Fourier coefficients
of any low-degree polynomial cannot be spread over
many disjoint sets. In other words, we show that one
can always find a small set S ⊂ [n] such that almost
all Fourier coefficients intersect S (that is, have some
nonzero entry inside S). We note that while Theorem 5
is interesting only for odd p,3 this structural result is
non-trivial also for polynomials over F2.

Theorem 7 (The Fourier spectrum of low-degree poly-
nomials over finite fields). For every prime finite field
Fp, degree d ≥ 1 and error ε > 0 there exists a
constant C(d, ε) ≤ (1/ε)O(4d) such that the following
holds. Let f(x1, . . . , xn) be a degree d polynomial over
Fp. Then there exists a subset S ⊂ [n] of size at most

3For p = 2 it reduces to the case of pseudorandom distributions.



|S| ≤ C(d, ε) such that∑
α∈Fn

p :α6=0,αS=0

|f̂(α)|2 ≤ ε ,

where αS is the restriction of α to coordinates in S. In
words, there is a constant size subset S such that the
total weight of the nonzero Fourier coefficients that do
not involve any variable from S is small.

Our second structural result concerns the structure of
polynomials with the following property. Denote with
Up the distribution over {0, 1}n where each bit is chosen
independently to be 0 with probability 1/p and 1 with
probability 1−1/p. We call Up the p-biased distribution.
We show that if the distributions f(Up) and f({0, 1}n)
are ε-far, then f can be approximated, over {0, 1}n,
by a function of a small number of lower degree
polynomials. To formally state our theorem we need
some definitions.

Definition 8 (Bit-Rank). Let g : {0, 1}n → Fp be
a function. The d-bit-rank of g, denoted bit-rankd(g),
is the minimal number of degree d polynomials over
Fp required to compute g over {0, 1}n. That is,
bit-rankd(g) = k where k is the minimal number such
that there exist k degree d polynomials f1, . . . , fk :
Fnp → Fp and a function Γ : Fkp → Fp such that for
all x ∈ {0, 1}n

g(x) = Γ(f1(x), . . . , fk(x)).

Example. Consider the function g(x) =
∑
i 6=j xixj

over Fp for p > 2. We have that the 1-bit-rank of g
is 1, as for all x ∈ {0, 1}n

g(x) = (x1 + . . .+ xn)2 − (x2
1 + . . .+ x2

n)

= (x1 + . . .+ xn)2 − (x1 + . . .+ xn) .

Thus, for x ∈ {0, 1}n, g(x) is determined by the linear
function `(x) = x1+. . .+xn. Notice that as a quadratic
polynomial over Fp, the rank of g (i.e. the minimal
number of linear functions required to compute g on
inputs from Fnp ) is either n− 1 or n, depending on p.

Our second structural result is the following.

Theorem 9 (Structure of bit-biased polynomials). Let
f(x1, . . . , xn) be a degree d ≥ 2 polynomial over Fp
such that the statistical distance between the distribu-
tions f(Up) and f({0, 1}n) is at least ε. Then, for every
δ > 0, there exists a function g : {0, 1}n → Fp such that
Prx∈{0,1}n [g(x) 6= f(x)] ≤ δ and bit-rankd−1(g) ≤
pO(c) where4 c = C((p− 1)d, δε2/p3).

4The function C(·, ·) is defined in the statement of Theorem 7.

In fact, for our proof we require such a polynomial g
that approximates f with respect to (an affine shift of)
Up, but we find this statement more appealing.

We provide an overview of the proof in the next
section. We first give a proof of Theorem 5 assuming
Theorems 9 and 7. In Section II-B we sketch the proof
of Theorem 9 and in Section II-C we prove Theorem 7.
The complete proofs can be found in the full version of
the paper.

II. PROOF OVERVIEW

Pseudorandom generators that fool low degree poly-
nomials over Fnp were obtained in [8], [9], [10]. In our
case we only consider the distribution of the polynomial
over {0, 1}n (and not over Fnp as the aforementioned
results), which creates new obstacles, and requires a
different approach.

We sketch below the proof of Theorem 5. Our proof
is carried by induction on the degree d, and uses
Theorem 7 and (a variant of) Theorem 9 as important
technical ingredients. We sketch their proofs in the
subsequent subsections.

A. Proof overview of Theorem 5

We prove in this section that if D is a pseudorandom
distribution for degree (p − 1)d polynomials and K is
a k-wise independent distribution, then Dp−1 ⊕K is a
bit-pseudorandom distribution for degree d polynomials.

Let f(x) = f(x1, . . . , xn) be a polynomial of degree
d over Fp. The base case of d = 1 was established
in [2], [3], hence we assume from now on that d ≥ 2.
We say that a polynomial f is regular if it cannot dis-
tinguish between the uniform distribution over {0, 1}n
and the p-biased distribution Up. We first show that it
is simple to construct bit-pseudorandom generators for
regular polynomials from pseudorandom generators for
somewhat higher degree polynomials. We then proceed
to handle the harder case of non-regular polynomials,
where the main tool used is a variant of Theorem 9.

1) Regular polynomials: Consider the p-biased dis-
tribution Up. This distribution can be simulated by low-
degree polynomials over Fp: let x ∈ Fnp be chosen
uniformly at random; then, xp−1 = (xp−1

1 , . . . , xp−1
n )

is distributed according to Up. Furthermore, it is easy
to construct a pseudorandom distribution fooling f(Up)
as follows. Let f̃(x) = f(xp−1). Then f̃ is a polyno-
mial of degree (p − 1)d, and the distributions f̃(Fnp )
and f(Up) are identical. In particular, any distribution
fooling degree (p − 1)d polynomials over Fp (such as
those guaranteed by Theorem 3) also fools f(Up), when
raised to the power p− 1.



Thus, if the polynomial f is regular in the sense that
it cannot distinguish between the uniform distribution
over {0, 1}n and the p-biased distribution Up, then one
can simply use a pseudorandom generator for f̃ to get
a pseudorandom generator for f . Hence, it is not hard
to deduce the following lemma.

Lemma 10. Let f(x) be a degree d polynomial over Fp
such that the distributions f(Up) and f({0, 1}n) are ε-
close. Let D ⊂ Fnp be a pseudorandom distribution for
degree ((p − 1)d) polynomials over Fp with error ε.
Then f(Dp−1) and f({0, 1}n) are O(ε)-close.

2) Non-regular polynomials: We now turn to study
non-regular polynomials. Namely, polynomials that
can distinguish between the uniform distribution over
{0, 1}n and the p-biased distribution. The main tool in
the proof is (a variant of) Theorem 9 that shows that non
regular polynomials possess a very special structure.
More specifically, that a non-regular polynomial can be
well approximated by a function of a small number of
lower degree polynomials.

We will start by proving that non-regular polynomials
admit a non-uniform distribution when applied to inputs
sampled from some shift of the p-biased distribution.
For a distribution D ⊂ {0, 1}n and an element a ∈
{0, 1}n denote by D ⊕ a the distribution generated by
bitwise-XORing the element a to all elements of D. It
is not hard to obtain the following claim.

Claim 11. Let f : {0, 1}n → Fp be a function such
that the distributions f(Up) and f({0, 1}n) are ε-far.
Then there exists a ∈ {0, 1}n such that the distribution
f(Up⊕ a) is ε/2-far from the uniform distribution over
Fp.

The following theorem (which is a variant of Theo-
rem 9) shows that non-regular polynomials have a low
bit-rank.

Theorem 12. Let f : Fnp → Fp be a polynomial of
degree d ≥ 2. Assume that, for some a ∈ {0, 1}n,
the distribution f(Up ⊕ a) is ε-far from the uniform
distribution over Fp. Then for every δ > 0 there exists
a function g : {0, 1}n → Fp such that

Pr
x∈Up⊕a

[g(x) 6= f(x)] ≤ δ

and
bit-rankd−1(g) ≤ c+ pc

where5 c = C((p− 1)d, δε2/p3).

5The function C(·, ·) is defined in the statement of Theorem 7.

We sketch the proof of Theorem 12 in the next
subsection.

We also need the following lemma, which shows that
if a degree d polynomial f(x) can be approximated,
under some shift of the p-biased distribution, by a func-
tion with a low (d−1)-bit-rank, then bit-pseudorandom
distributions for degree d− 1 polynomials also fool f .

Lemma 13. Let f : Fnp → Fp be a degree d ≥ 2 polyno-
mial. Assume that there is a function g : {0, 1}n → Fp
such that bit-rankd−1(g) = k and for some a ∈ {0, 1}n
it holds that

Pr
x∈Up⊕a

[f(x) 6= g(x)] ≤ δ.

Let D ⊂ {0, 1}n be a bit-pseudorandom distribution for
degree d− 1 polynomials with error ε. Then f(D) and
f({0, 1}n) are (ck1ε+ c2δ)-close, for c1 = p2(p−1)d

and
c2 = 4p · 2(p−1)d.

Lemma 13 is proved as follows. The first step in the
proof is showing that if f is a degree d polynomial
which can be approximated by a function g of low (d−
1)-bit-rank, then there is a distribution on functions H ,
such that every function in the support of H has a low
(d−1)-bit-rank and such that for every x ∈ Fnp it holds
that Prh∈H [f(x) = h(x)] ≥ 1 − δ. That is, we move
from one function that computes f on most of the space
to a distribution that is ‘good’ for every point x. The
main idea behind the proof of this step is to use the self-
correction properties of low degree polynomials. This
step is the main technical part of the proof. Given the
distribution H , the remainder of the proof of Lemma 13
is rather straightforward. We show that if a function
has a low (d − 1)-bit-rank then any bit-pseudorandom
distribution for degree d − 1 polynomials fools it, and
then show that if a function can be approximated by a
distribution on functions that have low (d− 1)-bit-rank
(as achieved in the 1st step) then this function is also
fooled by bit-pseudorandom distributions for degree d−
1 polynomials.

Theorem 5 now follows immediately from the com-
bination of Claim 11, Theorem 12 and Lemma 13.

B. Proof overview of Theorem 12

We now explain the idea behind the proof of The-
orem 12. Bogdanov and Viola proved that if f(x) is
a degree d polynomial over Fp such that f(Fnp ) is far
from the uniform distribution over Fp, then f can be
well-approximated by a function of a few polynomials
of lower degree [8]. Following this motivating example,
we would like to prove that if f(Up) is far from uniform
then f can be well-approximated over Up by a function



of few lower degree polynomials. However, the case
of f(Fnp ) being far from uniform is easy to handle via
directional derivatives, as the input space is invariant
under shifts (i.e. the mapping x → x + y for y ∈ Fnp
maps the uniform distribution over Fnp to itself). In our
case, the input distribution Up is not invariant under
shifts, which creates a major obstacle for using existing
techniques.

To overcome this obstacle we first ‘complete’ f to
a polynomial over Fnp that carries similar properties:
For a ∈ {0, 1}n define f⊕a(x) = f(xp−1 ⊕ a). Then
f⊕a is a polynomial of degree d′ = (p − 1)d and the
distributions f⊕a(Fnp ) and f(Up ⊕ a) are identical. We
show that as f is non-regular, there exists a ∈ {0, 1}n
such that f⊕a is biased. Similarly to [8] we get that
f⊕a can be approximated by a few of its directional
derivatives, where the directional derivative of f⊕a in
direction y ∈ Fnp is defined as f⊕ay (x) = f⊕a(x +
y)− f⊕a(x). However, in our case we need a stronger
property to hold. Define the support of y to be the set of
nonzero entries in y, Supp(y) = {i ∈ [n] : yi 6= 0}. We
would like to show that f⊕a can be approximated by
a few directional derivatives having small supports. To
obtain this we need Theorem 7 that shows that most of
the Fourier weight of f⊕a is supported on coefficients
that intersect a relatively small set S. Using this theorem
we get

Claim 14 (informal statement). Let f̃ be a polynomial
over Fp of degree d′ which is biased. For every δ > 0
there exist a small number of directions y1, . . . , yk ∈ Fnp
such that |Supp(y1)∪. . .∪Supp(yk)| is small, and such
that f̃ can be well-approximated by some function Γ of
f̃y1 , . . . , f̃yk

. Namely,

Pr
x∈Fn

p

[f̃(x) 6= Γ(f̃y1(x), . . . , f̃yk
(x))] ≤ δ.

Claim 14 is proved as follows. Let f̃ be a biased poly-
nomial, say

∣∣∣Ex∈Fn
p
[ωf̃(x)]

∣∣∣ = τ > 0, where ω = e2πi/p

is a primitive p-root of unity. Any biased polynomial
can be computed by a function of its derivatives,

ωf̃(x) = τ ′ · Ey∈Fn
p

[
ω−f̃y(x)

]
,

where τ ′ is appropriately chosen such that |τ ′| =
|τ |−1. This follows as for any x ∈ Fnp , the value of
Ey∈Fn

p
[ωf̃(x+y)] = Ey∈Fn

p
[ωf̃(y)] is independent of x

and is not too close to zero. This exact computation
can be transformed into an approximation by a few
derivatives by sampling independently a few derivatives
y1, . . . , yk ∈ Fnp , and then applying a standard Chernoff

argument to deduce that

ωf̃(x) ≈ τ ′ · 1
k

k∑
i=1

[
ω−f̃yi

(x)
]
.

From this is is easy to conclude that f̃ can be approxi-
mated by a function of f̃y1 , . . . , f̃yk

. The problem with
this approach is that the derivatives do not have to be
sparse, which is necessary for our proof. In order to
overcome this we apply Theorem 7 to the polynomial f̃ .
We get that there is a small set of variables S ⊂ [n] such
that most of the Fourier coefficients of f̃ involve some
variable from S. By choosing parameters accordingly
we can get that ∑

α∈Fn
p :α6=0,αS=0

|̂̃f(α)|2 � |τ |.

As a corollary, we get that for most x, the value of
Ey∈FS

p
[ωf̃(x+y)] is very close to the global average

Ey∈Fn
p
[ωf̃(y)] which does not depend on x. From this

we deduce that we can in fact approximate f̃(x) very
well by averaging only over derivatives in directions
supported on S,

ωf̃(x) ≈ τ ′′ · Ey∈FS
p

[
ω−f̃y(x)

]
,

where |τ ′′| ≈ |τ ′|. Thus, f̃(x) can be well approximated
by a function of {f̃y(x) : y ∈ FSp }.

Thus, applying Claim 14 for f̃ = f⊕a, we get that
f⊕a can be well approximated by a function of a small
number of its sparse derivatives. This is still not enough
as the derivatives of f⊕a have degree (p−1)d−1. How-
ever, we further show that sparse directional derivatives
of f⊕a can be calculated by directional derivatives of
f and a few variables.

Claim 15 (informal statement). Any directional deriva-
tive f⊕ay (x), such that Supp(y) ⊆ S, can be computed
by some function of {fz(·)}Supp(z)⊆S and {xi : i ∈ S}.

We prove this claim by showing that any derivatives
of f⊕a, with respect to a direction supported on S,
satisfies (f⊕a)y(x) = fw(xp−1 ⊕ a) for some w that
is supported on S and depends only on y, a and xS .
Theorem 12 follows from Claims 14 and 15.

C. Proof of Theorem 7

In this section we give the proof of Theorem 7.
We start by defining the notion of an S-correlated
distribution over Fnp , for a subset S ⊂ [n]. We recall
that for x ∈ Fnp we denote by xS ∈ FSp the restriction
of x to coordinates in S, and we denote the complement
of S by S̄ = [n] \ S.



Definition 16. Let S ⊂ [n]. The S-correlated distribu-
tion is a joint distribution over pairs (X,Y ) ∈ Fnp ×Fnp
defined as follows. Choose XS̄ = YS̄ uniformly in FS̄p ,
and choose independently and uniformly XS , YS ∈ FSp .
We denote the S-correlated distribution (X,Y ) by DS .
For f, g : Fnp → Fp and S ⊂ [n], we define the S-
correlation of f and g to be

∆S(f, g) =
∑

α∈Fn
p :αS=0,α6=0

f̂(α)ĝ(α) .

Note that an equivalent definition of DS is to first
sample X ∈ Fnp uniformly, then to set Y = X and
finally to resample YS . We now restate Theorem 7 in
terms of ∆S .

Theorem 17 (Theorem 7, restated). Let f : Fnp → Fp
be a degree d polynomial. For every ε > 0 there exists
S ⊂ [n], of size |S| ≤ C(d, ε) = O(1/ε)O(4d), such
that ∆S(f, f) ≤ ε.

Before giving the formal proof we explain the idea
behind it. We will prove the theorem by induction on
the degree. The case of linear polynomials will be easy
to handle by a direct calculation. For a general degree
d we will use the following useful claims.

Claim 18. Let A be any linear subspace of Fnp . For
every f : Fnp → Fp and S ⊂ [n] it holds that
∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2].

Claim 19. Let f : Fnp → Fp. Let A be a random
linear subspace of Fnp of dimension r (i.e. A is picked
at random amongst all r-dimensional subspaces of Fnp ).
Then

EA
[
Ea∈A[|f̂a(0)|2]

]
≤ 1
pr

+ max
α
|f̂(α)|2 ,

where EA means averaging over a random choice of A.

These claims indicate that we have to consider two
cases.

Case 1. All the Fourier coefficients of f are small:
In this case, the claims above imply that if we
set r to a large enough value and pick a random
r-dimensional subspace A then setting S be the union
of the corresponding sets for fa, for a ∈ A, we get the
required result (using the induction hypothesis).

Case 2. Some Fourier coefficient of f is large: In this
case we first approximate f by a function of a small
number of (linear shifts of) its partial derivatives. A
simple calculation then gives that for some k, δ∗ and σ

we have

∆S(f, f) ≤ 1
kδ∗

k∑
i=1

|∆S(h̃yi
, f)|+ 2σ ,

where {h̃yi}ki=1 is a set of (shifted) derivatives used to
approximate f . Observing that for any g and S ⊆ S′ it
holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 ,

we complete the proof for this case as well by picking
S′ to be the union of the corresponding sets for the
polynomials h̃yi

.

D. Proofs of two useful claims

Following the proof outline above we start by proving
Claims 18 and 19. As a first step we prove the following
lemma.

Lemma 20. Let f, g : Fnp → Fp. Then for any S ⊂ [n]
it holds that ∆S(f, g) =

E(x,y)∈DS
[ωf(x)−g(y)]− Ex∈Fn

p
[ωf(x)]Ey∈Fn

p
[ωg(y)]

and for every S′ ⊇ S it holds that

|∆S′(f, g)| ≤ (∆S(f, f))1/2(∆S(g, g))1/2 .

Proof: Recall that f̂(0) = E[ωf(x)] and similarly
for g. Let µ =

∑
α:αS=0 f̂(α)ĝ(α). Calculating we get,

µ =
∑

α:αS=0

(Exωf(x)ω−〈x,α〉)(Eyω−g(y)ω〈y,α〉).

Further simplification gives

µ =
1
p2n

∑
x,y

ωf(x)−g(y)
∑

α:αS=0

ω〈y−x,α〉.

Simple manipulation of the right hand side of the
above equation shows,

µ =
1
p2n

∑
xS̄=yS̄

pn−|S|ωf(x)−g(y)

= E(x,y)∈DS
[ωf(x)−g(y)] .

Hence, ∆S(f, g) = E(x,y)∈DS
[ωf(x)−g(y)] − f̂(0)ĝ(0).

To show the second claim we apply the Cauchy-
Schwarz inequality,

|∆S′(f, g)| =

∣∣∣∣∣∣
∑

α6=0,αS′=0

f̂(α)ĝ(α)

∣∣∣∣∣∣ ≤ ∑
α6=0,αS′=0

|f̂(α)|2
1/2 ∑

α6=0,αS′=0

|ĝ(α)|2
1/2

≤



 ∑
α6=0,αS=0

|f̂(α)|2
1/2 ∑

α6=0,αS=0

|ĝ(α)|2
1/2

=

(∆S(f, f))1/2(∆S(g, g))1/2 .

We now give the proofs of Claims 18 and 19.
Proof of Claim 18: By Lemma 20 we have

∆S(f, f) = E(x,y)∈DS
[ωf(x)−f(y)]− |f̂(0)|2 ≤

E(x,y)∈DS
[ωf(x)−f(y)] .

For any fixed a ∈ A, the distribution {(x + a, y + a) :
(x, y) ∈ DS} is identical to DS . So we can express
∆S(f, f) as follows,

∆S(f, f) ≤ Ea∈AE(x,y)∈DS
[ωf(x+a)−f(y+a)] .

Applying the Cauchy-Schwarz inequality (and using the
fact that A is a linear subspace) we get

∆S(f, f)2 ≤ E(x,y)∈DS

[
|Ea∈A[ωf(x+a)−f(y+a)]|2

]
Then using the standard trick of handling the squared

term we get that the left hand side of the above
inequality is

≤ Ea,a′∈AE(x,y)∈DS

[
ωf(x+a)−f(x+a′)ωf(y+a′)−f(y+a)

]
= Ea,a′∈AE(x′,y′)∈DS

[
ωf(x′+a−a′)−f(x′)ωf(y′)−f(y′+a−a′)

]
Simplifying the right hand side further we get,

∆S(f, f)2 ≤ Ea∈AE(x,y)∈DS
[ωfa(x)−fa(y)]

= Ea∈A[∆S(fa, fa) + |f̂a(0)|2] .

Proof of Claim 19: We begin by showing an
identity on Ea∈A[|f̂a(0)|2], for any subspace A.

Claim 21. For any function f : Fnp → Fp and any
subspace A ⊂ Fnp

Ea∈A[|f̂a(0)|2] =
∑

β∈Fn
p ,γ∈A⊥

|f̂(β)|2|f̂(β + γ)|2,

where A⊥ is the dual space of A.

Proof: Using the Fourier decomposition formula,
the R.H.S of the above expression is∑

β∈Fn
p ,γ∈A⊥

(Ex,x′∈Fn
p
[ωf(x)−f(x′)ω〈β,x

′−x〉])·

(Ey,y′∈Fn
p
[ωf(y)−f(y′)ω〈β+γ,y′−y〉])

which is equivalent to∑
γ∈A⊥

Ex,x′,y,y′∈Fn
p

[
ωf(x)−f(x′)+f(y)−f(y′)ω〈γ,y

′−y〉·

∑
β∈Fn

p

ω〈β,x
′−x+y′−y〉

]
.

Considering the inner sum over β, the above expression
can be simplified as

1
p3n

∑
x−x′=y′−y

ωf(x)−f(x′)+f(y)−f(y′)
∑
γ∈A⊥

ω〈γ,y
′−y〉 .

Now the inner sum over γ is nonzero only when y′−y ∈
A. Denote a = y′− y ∈ A. Recalling that we sum over
x− x′ = y′− y = a, we can further simplify the above
expression as

|A⊥|
p3n

∑
a∈A

∑
x′,y∈Fn

p

ωf(x′+a)−f(x′)+f(y)−f(y+a)

= Ea∈A[|f̂a(0)|2] .

We now have that

Ea∈A[|f̂a(0)|2] =
∑

β∈Fn
p ,γ∈A⊥

|f̂(β)|2|f̂(β + γ)|2 =

∑
β∈Fn

p ,α∈Fn
p

|f̂(β)|2|f̂(α)|2χA⊥(α− β) ,

where χA⊥ is the characteristic function of A⊥. Let A
be a random subspace of dimension r. The probability
for α 6= β that (α − β) ∈ A⊥ is 1/pr. Since∑
α |f̂(α)|2 = 1 by Parseval’s identity, we obtain that

EA
[
Ea∈A[|f̂a(0)|2]

]
=∑

β 6=α∈Fn
p

|f̂(β)|2|f̂(α)|2EA[χA⊥(α− β)] +
∑
α∈Fn

p

|f̂(α)|4

≤ 1
pr

+
∑
α∈Fn

p

|f̂(α)|4 ≤ 1
pr

+ max
α
|f̂(α)|2 .

E. Proof of Theorem 17

The proof is by induction on d. The base case
is d = 1. Let f(x) =

∑n
i=1 aixi be any linear

polynomial. Consider S = {i} such that ai 6= 0.
Then for any α ∈ Fnp such that αS = 0 we get
f̂(α) = Exi∈Fp [ωaixi ]

∏
j 6=i Exj∈Fp [ω(aj−αj)xj ] = 0.

Hence,
∑
α:αS=0 |f̂(α)|2 = 0 and the claim is proved.



By induction hypothesis, let the result be true for
any degree ≤ d− 1 polynomial. As outlined above, the
proof proceeds by considering two cases, whether f
has some large Fourier coefficient or not.

Case 1: Assume that |f̂(α)| ≤ δ∗, for all α ∈ Fnp , for
an appropriate choice of δ∗ (that we will suitably fix
later). Let εd = ε. By Claim 21 we get that for any
S ⊂ [n] and a subspace A ⊆ Fnp

∆S(f, f)2 ≤ Ea∈A[∆S(fa, fa)] + Ea∈A[|f̂a(0)|2] .

Notice that for each a ∈ A, deg fa ≤ d − 1. Hence,
by induction hypothesis, for each a ∈ A, there exist Sa
of size C(d − 1, εd−1) such that ∆Sa

(fa, fa) ≤ εd−1

(for some εd−1 that will be soon determined). Let A
be a linear subspace of dimension r that minimizes
Ea∈A[|f̂a(0)|2]. Let S = ∪a∈ASa. Claim 19 implies
that

∆S(f, f)2 ≤ εd−1 +
1
pr

+ max
α
|f̂(α)|2 .

Now it is enough to choose r, εd−1 and δ∗ such
that εd−1 + 1

pr + (δ∗)2 ≤ ε2d. Also, notice that
|S| = C(d, εd) ≤ prC(d− 1, εd−1).

Case 2: Let β be a Fourier coefficient such that
|f̂(β)| ≥ δ∗. Set δ = f̂(β). Let h(x) = f(x) −
〈x, β〉. Then the bias of −h(x) is Ex∈Fn

p
[ω−h(x)] =

δ. Notice that for every x ∈ Fnp we have
ωh(x)Ey[ω−h(x+y)] = Ey[ω−hy(x)]. As for every fixed
x we have Ey[ω−h(x+y)] = δ it is clear that we can get
the following decomposition of f(x)

ωf(x) = ω〈x,β〉 · ωh(x) = ω〈x,β〉 · 1
δ

Ey[ω−hy(x)] =

1
δ

Ey[ω〈x,β〉−hy(x)] .

Define h̃y(x) = 〈x, β〉 − hy(x). Notice that since h(x)
has degree d ≥ 2 then deg(h̃y) ≤ d − 1. Now, if we
sample enough y’s uniformly and independently at ran-
dom, and take the average of the corresponding ωh̃y(x),
then we get a good estimate of ωf(x). Fix a parameter
σ ∈ (0, 1) (to be determined later), using Chebyshev’s
inequality we find k such that the following holds

Ex,y1,...,yk∈Fn
p
[|ωf(x) − 1

δk

k∑
i=1

ωh̃yi
(x)|] ≤ σ.

Claim 22. To get an approximation
Ex,y1,...,yk∈Fn

p
[|ωf(x) − 1

δk

∑k
i=1 ω

h̃yi
(x)|] ≤ σ, it

is enough to take k = O(|δ|−3σ−3).

Proof: It is enough to choose k such that
E[|Re(ωf(x) − 1

δk

∑k
i=1 ω

ĥyi
(x))|] ≤ σ/2, and

E[|Img(ωf(x) − 1
δk

∑k
i=1 ω

ĥyi
(x))|] ≤ σ/2. Let Yi =

Re( 1
δω

h̃yi
(x)). Then Eyi

[Yi] = Re(ωf(x)). It is clear
that Var(Yi) ≤ 1

|δ|2 . Hence, by Chebyshev’s inequality
we get that

Pr(|Re(ωf(x))− 1
k

k∑
i=1

Yi| ≥
σ

4
) ≤ 16
|δ|2kσ2

.

Therefore, as always |Re(ωf(x)) − 1
k

∑k
i=1 Yi| ≤ 1 +

δ−1 ≤ 2δ−1 we get that E[|Re(ωf(x))− 1
k

∑k
i=1 Yi|] ≤

σ/2 for k ≥ 128
|δ|3σ3 . The imaginary part can be approx-

imated similarly.
Fix {yi}i∈[k] in such a way that Ex∈Fn

p
[|ωf(x) −

1
δk

∑k
i=1 ω

h̃yi
(x))|] ≤ σ. Let F (x) = 1

kδ

∑k
i=1 ω

h̃yi
(x).

As Ex∈Fn
p
[|ωf(x) − F (x)|] ≤ σ we can upper bound

∆S(f, f) as follows

∆S(f, f) =

E(x,y)∈DS
[ωf(x)−f(y)]−Ex∈Fn

p
[ωf(x)] ·Ey∈Fn

p
[ωf(y)] ≤∣∣∣E(x,y)∈DS

[(ωf(x) − F (x))ω−f(y)]−

Ex∈Fn
p
[ωf(x) − F (x)] · Ey∈Fn

p
[ωf(y)]

∣∣∣+∣∣∣E(x,y)∈DS
[F (x)ω−f(y)]− Ex∈Fn

p
[F (x)] · Ey∈Fn

p
[ωf(y)]

∣∣∣ ≤
2σ+

∣∣∣E(x,y)∈DS
[F (x)ω−f(y)]− (Ex[F (x)])(Ey[ω−f(y)])

∣∣∣ ≤
2σ +

1
kδ

k∑
i=1

∣∣∣E(x,y)∈DS
[ωh̃yi

(x)−f(y)]−

(Ex[ωh̃yi
(x)])(Ey[ω−f(y)])

∣∣∣ ≤
2σ +

1
kδ∗

k∑
i=1

|∆S(h̃yi
, f)|.

As deg(h̃yi
) ≤ d − 1 we get, by the induction hy-

pothesis, that for each h̃yi
there exists a set Si, of size

C(d − 1, εd−1), such that ∆Si(h̃yi , h̃yi) ≤ εd−1. Con-
sider S = ∪ki=1Si. Obviously, |S| ≤ kC(d − 1, εd−1).
Lemma 20 implies that

|∆S(h̃yi , f)| ≤ (∆Si(h̃yi , h̃yi))
1/2(∆Si(f, f))1/2 ≤

(∆Si
(h̃yi

, h̃yi
))1/2 ≤ ε1/2d−1 .

In order to achieve ∆S(f, f) ≤ εd we need to fix the
parameters δ∗, εd−1, k, σ so that 1

δ∗ ε
1/2
d−1 + 2σ ≤ εd.



We now show how to pick the parameters adequately.
We need to satisfy both εd−1 + 1

pr + (δ∗)2 ≤ ε2d
and 1

δ∗ ε
1/2
d−1 + 2σ ≤ εd. Fix σ = εd

4 and δ∗ = εd
2 .

Then it is enough to choose εd−1 = O(ε4d) and r =
logp(ε2d/4). We now estimate |S|. Recall that |S| ≤
max(pr, k)C(d − 1, εd−1) where k = O(|δ∗|−3σ−3).
This yields the following bound

|S| ≤ O(ε−6
d )C(d− 1,Ω(ε4d))

Solving the recurrence for C(d, ε) we get that C(d, ε) ≤
O(ε)O(4d). This completes the proof of Theorem 17.

III. CONCLUSIONS AND OPEN PROBLEMS

We construct efficient and explicit bit-pseudorandom
generators for constant degree polynomials over finite
fields. These yield pseudorandom generators for CC0[p]
which achieve any small constant error while using only
O(log n) random bits. The proof is based on a new
characterization of the Fourier spectrum of low degree
polynomials over finite fields.

We state several open problems.
• Construct pseudorandom generators for AC0[p].

The next step, following this work, is to construct
pseudorandom generators for sparse polynomials
over Fp (i.e. polynomials of degree O(log n) with
only a polynomial number of monomials). Any
such polynomial can be realized by a depth-2
AC0[p] circuit.

• Generalize our results for CC0[m] for composite
m. As a first step, generalize our results for bit-
pseudorandom generators for low degree polyno-
mials over Zm. The result of [2] constructs a bit-
pseudorandom generator for linear forms over Zm
using O(log n) random bits.

• Improve the parameters of Theorem 7. For d =
1 it is an easy observation that a set S of size
|S| = 1 suffices. For d = 2, it is not difficult to see
that all nonzero Fourier coefficients of a quadratic
polynomial form an affine space and have the same
absolute value. Using this observation one can get
a set of size |S| = O(log 1/ε). We do not have any
example of a constant degree polynomial requiring
sets of size ω(log 1/ε).

• Improve the dependence of the seed length on
ε in Theorem 5. Currently, the seed length is
logarithmic in n but a tower of height O(d) in
1/ε.
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[11] J. Håstad, “Computational limitations for small-depth
circuits,” Ph.D. dissertation, MIT, 1986.

[12] N. Nisan, “Pseudorandom bits for constant depth cir-
cuits,” Combinatorica, vol. 11, no. 1, pp. 63–70, 1991.

[13] L. M. J. Bazzi, “Polylogarithmic independence can fool
DNF formulas,” in Proceedings of the 48th FOCS, 2007,
pp. 63–73.

[14] M. Braverman, “Poly-logarithmic independence fools
AC0 circuits,” in Proceedings of the 24th CCC, 2009.

[15] N. Linial and N. Nisan, “Approximate inclusion-
exclusion,” Combinatorica, vol. 10, pp. 349–365, 1990.

[16] A. A. Razborov, “Lower bounds on the size of bounded
depth circuits over a complete basis with logical addi-
tion,” Math. Notes, vol. 41, no. 4, pp. 333–338, 1987.

[17] R. Smolensky, “Algebraic methods in the theory of lower
bounds for Boolean circuit complexity,” in Proceedings
of the 19th STOC, 1987, pp. 77–82.


